
www.manaraa.com

Measuring voluntary and policy-induced social
distancing behavior during the COVID-19 pandemic
Youpei Yana

, Amyn A. Malikb,c, Jude Bayhamd
, Eli P. Fenichela,1, Chandra Couzense, and Saad B. Omerb,c,e,f

aSchool of the Environment, Yale University, New Haven, CT 06511; bYale Institute for Global Health, New Haven, CT 06510; cDepartment of Internal
Medicine, Yale School of Medicine, New Haven, CT 06510; dDepartment of Agricultural and Resource Economics, Colorado State University, Fort Collins, CO
80523; eDepartment of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510; and fYale School of Nursing, Orange, CT
06477

Edited by Catherine L. Kling, Cornell University, Ithaca, NY, and approved February 12, 2021 (received for review May 4, 2020)

Staying home and avoiding unnecessary contact is an important
part of the effort to contain COVID-19 and limit deaths. Every state
in the United States enacted policies to encourage distancing and
some mandated staying home. Understanding how these policies
interact with individuals’ voluntary responses to the COVID-19 ep-
idemic is a critical initial step in understanding the role of these
nonpharmaceutical interventions in transmission dynamics and
assessing policy impacts. We use variation in policy responses
along with smart device data that measures the amount of time
Americans stayed home to disentangle the extent that observed
shifts in staying home behavior are induced by policy. We find
evidence that stay-at-home orders and voluntary response to locally
reported COVID-19 cases and deaths led to behavioral change. For
the median county, which implemented a stay-at-home order with
about two cases, we find that the response to stay-at-home orders
increased time at home as if the county had experienced 29 addi-
tional local cases. However, the relative effect of stay-at-home or-
ders was much greater in select counties. On the one hand, the
mandate can be viewed as displacing a voluntary response to this
rise in cases. On the other hand, policy accelerated the response,
which likely helped reduce spread in the early phase of the pan-
demic. It is important to be able to attribute the relative role of self-
interested behavior or policy mandates to understand the limits and
opportunities for relying on voluntary behavior as opposed to im-
posing stay-at-home orders.

COVID-19 | stay-at-home order | avoidance behavior | nonpharmaceutical
interventions | social distancing

Worldwide, people stayed home to reduce transmission of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

the virus causing the COVID-19 pandemic. This behavioral shift
helped prevent the COVID-19 pandemic from being worse. How
much of the staying home response was driven by individuals
acting in their own interests in response to health risks, and how
much was the result of policy mandates or orders? The need for
evidence to resolve this question is characterized by two statements
from US governors’ offices. Governor Burgum of North Dakota
stated (1), “We believe in the power of individual responsibility.
And we need individual responsibility now more than ever to slow
the spread of COVID-19,” whereas, following new stay-at-home
orders, the office of Governor Brown of Oregon said (2), “If people
aren’t going to take this virus seriously, we are prepared to offer
consequences. . .[and] hold people accountable in making smart
choices that can save another’s life.” Mandates can accelerate or
strengthen the public response. This is a necessary, but not suffi-
cient, condition for mandated nonpharmaceutical interventions to
reduce SARS-CoV-2 transmission. For such transmission reduc-
tions to reduce deaths, the mandates must not compromise health
services (3). However, mandates are also politically costly, difficult
to sustain, and difficult to enforce. There have been over 1,000
lawsuits filed in the United States over COVID-19 public measures
(4), and public health resources may need to be diverted to defend
against these lawsuits. COVID-19 vaccines do not nullify the

importance of relying on voluntary behavior or mandates. Vac-
cines could still take a substantial amount of time to distribute,
and there are a large number of pathogens similar to
SARS-CoV-2 that could cause another pandemic (5).
Theory suggests that people alter behavior voluntarily to avoid

becoming sick, including staying home (6–10). Evidence from the
2009 H1N1 swine flu pandemic (11–13), Lyme disease (14), the
2003 SARS epidemic (15, 16), and HIV (17, 18) support the theory.
The emerging evidence from COVID-19 (19–21) also supports the
theory that people alter behavior in response to infectious disease
risk. Localized shutdowns in Mexico City during the H1N1 pan-
demic encouraged people to stay in, but the response was short
lived (22).
The 2020 COVID-19 pandemic is one of the first opportuni-

ties to investigate how public health mandates in the form of
nonpharmaceutical interventions interact with voluntary behav-
ioral shifts during epidemics. All 50 US states and the District of
Columbia issued emergency orders. A total of 39 states and the
District of Columbia issued stay-at-home or shelter-in-place orders,
which are two names for the same thing (hereafter stay-at-home).
However, there is substantial heterogeneity in the timing of local
cases and stay-at-home orders (Fig. 1). Most counties were under
emergency orders (99.4%) and closed schools (98%) prior to ex-
periencing a single COVID-19 case (SI Appendix, Fig. S1). Recent
studies (23–25) have attempted to evaluate the effectiveness of
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Early in the US COVID-19 epidemic, Americans spent substan-
tially more time at home to reduce cases. Disentangling vol-
untary from policy-induced behavioral changes is critical for
governments grappling with relaxing or renewing restrictions.
We estimate the number of additional reported cases that
would have been needed to elicit a voluntary behavioral re-
sponse equivalent to the behavioral response to policy. A
substantial share of the observed behavioral response was
voluntary. Stay-at-home orders increased the time people
spent at home by replacing voluntary actions that likely would
have emerged as cases rose. Our analysis is an initial step in
answering the critical policy question as to whether fast for-
warding the response provides sufficient public health benefits
to justify the mandates.
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restrictions that ordered people to stay in on slowing the spread of
SARS-CoV-2. Still, these studies assume no voluntary change in
behavior as the alternative scenario to restrictions. Yet voluntary
behavior is a fundamental part of the transmission process. If the
true data generating process for an epidemic involves the theo-
retically predicted voluntary behavioral avoidance response, then
an empirical model that assumes away that behavioral response
can fit the epidemiological data as well as a model that specifies
the true data generating process (6). The problem is that the
misspecified model introduces many opportunities for confound-
ing processes in epidemiology (26), and a misspecified model
cannot provide information about behavioral response, whether
voluntary or because of public health mandates. Therefore, we
focus on the first step in a potential causal chain.
It is important to understand how self-interest and policy

mandates interact. The interactions between voluntarily staying
home and policy-induced staying home can be viewed through
two lenses. On the one hand, the policy can overlap or displace
voluntary behavior that would have happened anyway. If the
policy mandate overlaps or displaces voluntary contributions of
behavioral change and leads to a similar outcome, then mandates
achieve the outcome at a greater cost. Ostrom (27) expands on the
costs of displacing or crowding out voluntary behavior, writing,
“external interventions crowd out intrinsic motivation if the indi-
viduals affected perceive them [the policies] to be controlling.”
She argues that many policies adopted in modern democracies
presume authorities must solve all collective action problems,
thereby crowding out citizenship, wasting resources, and under-
mining democracy. Stay-at-home mandates likely fit this char-
acterization. Empirical evidence suggests that as mandatory
involuntary contributions increase, voluntary contributions are
increasingly crowded out, even when there is a private benefit to
the contribution (28).

Conversely, a mandate could achieve a stronger or faster re-
sponse, arriving at the “full” response faster. Speed is valu-
able during an epidemic, even if the final response is similar in
magnitude. Moreover, a stronger or faster response may be nec-
essary to avoid exceeding healthcare capacity, which could lead to
higher morbidity and mortality rates for the same number of cases.
The response induced by a mandate may be faster or stronger
because people may act to protect themselves voluntarily but fail
to internalize the fact that if they become infected, then they can
infect others (29).
The metric that provides a common fact to weigh these two

perspectives is the case equivalent response—how many more
cases would have been needed to elicit the same behavioral re-
sponse as the mandate. This simultaneously evaluates whether
the mandate displaces or overlaps voluntary behavior and mea-
sures the speeding-up effect. If the case equivalent response is of
similar size as reported cases up to likely measurement error at
the time the stay-at-home mandate begins, then we consider the
effect epidemiologically small. Conversely, if the case equivalent
response is many orders of magnitude greater than current cases
and measurement error, then the stay-at-home mandate likely
has a large behavioral effect, which may translate into reduced
cases and reduced deaths, all else equal.
To measure the case equivalent response, we focus on the

number of minutes per day that people spend at home, measured
using smart device location data. For well over a decade, epi-
demiologists have used surveys of contact behavior to parame-
terize epidemiological models (30–34). Bayham et al. (13)
refined earlier work (35), inferring likely contact patterns from
the American Time Use Survey (ATUS). They showed that time-
use data, based on the ATUS, produced similar contact patterns
to those based on the detailed surveys epidemiologist relied on.
Bayham et al. also showed that in the case of H1N1, conditioning
cases on time spent at home gave a similar reduction in cases as
an epidemiological model using the fully specified contact struc-
ture. Hence, we use the smart device data to measure the time
spent at home as a measure of avoidance behavior. We confirm
the primary results with other measures of time use.
We define voluntary response as an increase in minutes at home

as a function of reported cases within the county, after controlling
for mandates, which provides a relatively local measure of risk. We
also consider reports of national and state cases. We focus on
three policy mandates that led to “involuntary” behavioral re-
sponses. First, we consider stay-at-home orders, which we combine
with shelter-in-place orders, colloquially called “lockdowns.”
While people were ordered to stay home, exceptions were made
for vaguely defined essential activities, and these orders were
seldom enforced by police. Therefore, we put “involuntary” in
quotes—people could ignore the orders. Nevertheless, the intent
of the orders was to keep people home involuntarily. Second, we
consider school closures that induced parents to stay home from
work to care for children. Third, we consider emergency orders
that raised awareness and may have led businesses to close or
encourage working from home but did not provide direct public
mandates. In SI Appendix, we repeat the analysis using reported
deaths instead of, and along with, cases. We acknowledge that the
voluntary aspect of behavior is hard to define. Closures likely in-
creased the salience of concern for COVID-19, making “volun-
tary” difficult to define in the COVID-19 upheaval, which is why
we focus on the early phase of the epidemic in the United States.
However, the salience of other indirect policy impacts may have
been achievable through more targeted policies.
Here, we use the variation in policy responses along with smart

device data to measure the amount of time Americans stayed
home and adjusted other behaviors in response to pathogen risk
and stay-at-home orders. We contribute to the body of evidence
that finds strong voluntary avoidance behavior. We also con-
tribute to the body of evidence that finds a strong effect of

Fig. 1. Date that counties enacted stay-at-home order (A) and date of the
first case reported within a county (B).
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mandates. We fill a gap in the literature by connecting voluntary
response and policy-induced responses within a single empirical
framework. We then compute the case equivalent response of
the stay-at-home mandate. Imposing a stay-at-home mandate
fast forwards or displaces the voluntary staying home. We find
that most counties imposed stay-at-home orders with few cases;
these stay-at-home orders induced a time at home equivalent to
tens of additional cases, but that most counties would have
achieved a similar amount of time allocated to home if cases rose
as they did in areas without the stay-at-home orders. However,
for some counties stay-at-home orders altered behavior in a
manner equivalent to thousands of cases, suggesting the need for
policy to adapt to local conditions.

Results
We use SafeGraph smart device median home dwell time data
reported at the Census block group level and averaged to the
county level for 3,104 counties in the United States and Wash-
ington, DC, between January 31 and April 21, 2020. This covers
2 wk before the earliest emergency declaration orders and 2 wk
after the last stay-at-home order during the first phase of the US
epidemic (Fig. 2A). The daily mean of the median time spent at
home on January 31 across all counties was 576.8 min (SD 86.8).
Time at home gradually declined from January 31, reaching a
minimum of 411.8 min (SD 99.5) on February 25. Time spent at
home then increased, peaking on April 12, 923.5 min (SD 158.2)
(Fig. 2A). There is a large dip in time at home around March 21,
after the median date of emergency orders and prior to the me-
dian date when stay-at-home orders went into effect (Fig. 2A).
The SafeGraph retail visitation data suggest that people increased
visits to stores like Costco, Walmart, and Target around the
weekend that preceded a major wave of state stay-at-home orders,

perhaps in anticipation of restrictive policies (36). Fig. 2A also
shows that counties that received stay-at-home orders (black line)
were similar in their staying home behavior to counties that never
received stay-at-home orders prior to the date that many counties
began issuing stay-at-home orders but diverged after those coun-
ties began issuing stay-at-home orders.
Time spent at home was already rising in the average county

when it experienced its first case (Fig. 2B) and began rising
around the time the state experienced its first case (Fig. 2C).
Harmonizing to the first county case report, there is a difference
in average behavior in counties that received stay-at-home orders
(black line) and those that did not (blue line). On average, time
spent at home was at its lowest level and began rising prior to
emergency declarations (Fig. 2D). This adds to the evidence that
a portion of the behavioral response was voluntary. Median time
at home continued to increase following the emergency decla-
ration. On average, time at home was also rising prior to school
closures and stay-at-home orders (Fig. 2 E and F).
We use 251,992 observations to estimate a regression model of

the log of time spent at home on the log of reported local and
national cases, the presence of distancing mandates, the inter-
action between reported county cases and stay-at-home orders,
and other covariates (summary statistics in SI Appendix, Table
S1). The regression results enable us to disentangle voluntary
avoidance behavior from the effect of policies (see Materials and
Methods for details). We test many alternative specifications (see
Materials and Methods). Almost all coefficients are precisely es-
timated, and regression tables for alternative specifications are
provided in SI Appendix.
The average American increased time at home in direct re-

sponse to COVID-19 risk as measured by case and death reports.
From the most basic specification (Table 1, column 1), the

Fig. 2. Trends for the mean time at home in minutes for counties never receiving stay-at-home policies (blue lines) and counties receiving a stay-at-home
policy (black lines) by calendar date with vertical lines showing the median date for emergency orders and stay-at-home policies (A), aligned to the first case
reported at the county level (B), aligned to the first case reported at the state level (C), aligned to the emergency declarations (D), aligned to school closure
(E), and aligned to the stay-at-home policy (F).
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coefficient of log county cases shows that a 1% change in cu-
mulative reported cases in a county is associated with approxi-
mately a 4% increase in time spent at home. The specification in
column 1 may be slightly biased because it omits a measure of
the scope for spending time at home or the length of the epi-
demic. Including industry labor shares helps control for the share
of essential workers who could not stay home and the probability
of becoming unemployed over the course of the epidemic and
epidemic day fixed effects control for the epidemic length (Ta-
ble 1, column 2). This specification results in a greater response
to cases, but this is not statistically different from the base
specification.
The response to risk is stable across specifications considered.

The time at home response to county cases ranges between 3.6
and 5% (SI Appendix, Table S2). Directly accounting for inter-
actions between the response to cases and the stay-at-home or-
der is important (SI Appendix, Table S3). We find that a 1%
increase in state-level cases, instead of county cases, is associated
with approximately a 3.3 to 4.7% increase in time at home (SI
Appendix, Table S4). Including county and state cases suggests a
slightly greater aggregate voluntary response (SI Appendix, Table
S4). Focusing on new cases, we find that a 1% increase in new
county or state cases yields a 2 to 3% increase in time at home
(SI Appendix, Table S5). We find that a 1% increase in reported
county or state deaths yields a 5 to 7% increase in time at home
(SI Appendix, Table S6).
The average American also responded to stay-at-home orders.

There were two responses to stay-at-home orders. First, antici-
pating these orders, Americans spent substantially less (>25%)
time at home the weekend of March 21 (Table 1), consistent with
Fig. 2A. Second, the stay-at-home orders kept people home. The
direct effect of the stay-at-home order for the preferred speci-
fication was a 12.9% increase in time at home (Table 1, column

2), which is statistically indistinguishable from the base model
and other specifications (Fig. 3). The effect of the stay-at-home
order net of the effects on the response to cases was a 10% in-
crease in time at home.
School closures influenced time at home. Our primary speci-

fication (Table 1) suggests that school closures increase time at
home by ∼18%. Some alternative specifications (Fig. 3) reduce
the estimated response to school closures to 12%, but irrespective
of specification, most estimates are statistically indistinguishable
from our primary estimate.
The inference is robust to many alternative specifications, in-

cluding replacing the natural log of time at home with time not at
home (SI Appendix, Table S7), the level of time at home (SI
Appendix, Table S8), or accounting for cases in the bordering
states (SI Appendix, Table S9). Including the rate of change in
cases; combining cumulative cases, new cases, and deaths; and
considering cases per capita (SI Appendix, Tables S10 and S11)
do not qualitatively affect inference.
The signs of coefficients are robust to the model specification,

and magnitudes tend to be statistically indistinguishable among
the models in Table 1 and associated models in SI Appendix.
Nevertheless, it is important to avoid misattribution that shifts
the effect of cases from/to the effect of the stay-at-home order.
There are two possible mechanisms that an omitted time-varying
variable may lead to the misattribution of causality between the
direct “voluntary” responses to case reports and the “involun-
tary” response to policy mandates. First, counties where the
population is more likely to voluntarily respond to the pathogen
may be more likely to implement stay-at-home orders earlier.
This would lead our model to overestimate the effect of the
policy order. This hypothesis garners some support from the fact
that including the labor shares in the model increase the measure
of the voluntary response. Second, county or state officials

Table 1. Time at home associated with county case reports under the base model, with epidemic day (based on the first case report)
fixed effects and with labor share for counties before the stay-at-home orders, counties with no order, and all counties in the United
States (January 31 to April 21, 2020)

ln (home dwell time)

Full sample
Full sample prior to
stay-at-home orders

Counties receiving mandates
before the order

1 2 3 4 5 6

ln (county case+1) 0.0397*** 0.0421*** 0.0237*** 0.0278*** 0.0343*** 0.0516***
(0.00450) (0.00798) (0.00339) (0.00709) (0.00393) (0.00553)

ln (national case+1) −0.00826* −0.0181*** −0.0127** −0.0199*** −0.0255*** −0.0254***
(0.00361) (0.00481) (0.00436) (0.00466) (0.00262) (0.00449)

ln (national case +1) * first county report 0.00319*** 0.00249*** 0.00812*** 0.00601*** 0.00635*** 0.00393***
(0.000654) (0.000546) (0.000686) (0.000703) (0.000477) (0.000621)

Emergency 0.0283 0.0614*** 0.0456** 0.0702*** 0.0834*** 0.0964***
(0.0149) (0.0133) (0.0170) (0.0155) (0.0139) (0.0172)

Stay-at-home 0.154*** 0.129***
(0.0200) (0.0208)

School closure 0.187*** 0.183*** 0.187*** 0.184*** 0.181*** 0.171***
(0.00975) (0.0188) (0.00871) (0.0184) (0.0117) (0.0180)

ln (county case+1) * stay-at-home −0.0213*** −0.0290***
(0.00445) (0.00648)

Anticipatory weekend −0.283*** −0.266*** −0.277*** −0.263*** −0.245*** −0.240***
(0.0121) (0.0161) (0.0129) (0.0162) (0.0147) (0.0148)

County FE X X X X X X
Weekday FE X X X X X X
Epidemic day FE X X X
Labor share X X X
R-sq 0.795 0.807 0.745 0.756 0.761 0.769
N 251,992 187,686 147,696

Standard errors, clustered at the state level, are shown in parentheses. *P < 0.05, **P < 0.01, ***P < 0.001. “X” in the table indicates that the corresponding
fixed effects (FE) have been included in the regression model.
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observe the voluntary response of their populations and delay
orders selectively in places with a strong voluntary response. We
are unaware of any public record that documents this mecha-
nism. In some places, counties imposed mandates independently.
However, most counties were subject to state-wide policy man-
dates. To address this general concern, we estimate the models
on data prior to the time the stay-at-home orders are imple-
mented, investigate a split sample, and implement an augmented
synthetic control (37).
First, we estimate our primary set of models using only data

generated prior to the imposition of stay-at-home orders with
and without counties that never receive stay-at-home orders
(Table 1). We find the effect of cases is stable and statistically
indistinguishable, implying that there is sufficient variation in the
data during this period to identify the effect of county cases. This
suggested limited scope for an omitted variable to confound the
primary effect of county cases.
Next, we examine the pretrend response to cases for counties

receiving stay-at-home orders and the full sample with counties

never receiving the order. The pretrend response to county cases
and school closures are similar to our main result. A 1% increase
in county cases is associated with a 2.1 to 3.6% increase in time
at home (Table 1, columns 3 to 6 and SI Appendix, Table S2).
This suggests counties without stay-at-home orders did not show
a stronger voluntary response.
A related question is what impact does the stay-at-home

mandate have on counties that receive the mandate relative to
those that did not? Augmented synthetic control (37) is useful
for investigating this question but does not provide an estimate
of the voluntary response. An advantage of the augmented syn-
thetic control approach is that it provides a straightforward ap-
proach to verify that the counties used as comparators are indeed
good “controls” and have parallel trends prior to the stay-at-home
mandate. Implementing the augmented synthetic control (Fig. 4),
we find an immediate direct effect of the stay-at-home order of
∼4%, which is lower than the 10% effect from our preferred
specification. This suggests that, if anything, our primary specifi-
cation underestimates the voluntary response and overestimates
the measure of equivalent cases. However, the augmented syn-
thetic control results are statistically indistinguishable to the net
effect of stay-at-home orders in a version of the model with
stay-at-home day fixed effects (SI Appendix, Table S2, column 5),
but that model also implies a marginal decrease in time at home
with increase cases following the stay-at-home order because that
specification and the augmented synthetic controls do not allow
for differentiated responses to cases following the stay-at-home
order, whereas the primary specification does.
The estimated parameters from model 2 in Table 1 imply that

there may be an additional number of COVID-19 cases in the
county that would elicit the same amount of time spent at home,
the equivalent cases for the stay-at-home response (Fig. 5)
(details in Materials and Methods). Most counties that imposed
stay-at-home orders did so with few cases in the county (Fig. 6A).
An equivalent number of cases was calculated for counties that
imposed stay-at-home orders (Fig. 6B) and scaled to the county’s
population (Fig. 6C). For the median county, 29.3 (parametric
bootstrap 95% CI [11, 47,607]) additional cases would have led
to behavioral changes associated with the stay-at-home order.
The upper end of the confidence interval is driven by a long thin
right tail (SI Appendix, Fig. S2). Counties with larger urban
populations generally stand out as requiring more cases to elicit
the same amount of time at home as the stay-at-home orders, but
there are a number of smaller and rural counties that also re-
quire a large number of cases (Fig. 6B). However, Fig. 6C shows

Fig. 3. Summary of regression results on policy effects. The specifications are:
1) models with cumulative county cases, 2) models with cumulative state rather
than county cases, 3) models with cumulative state and county cases, 4) models
with new county cases rather than cumulative cases, 5) models with new state
cases rather than cumulative cases, 6) models with new county and state cases
rather than cumulative cases, 7) models with cumulative county deaths, 8)
models with cumulative state rather than county deaths, and 9) models with
cumulative state and county deaths. Model A is the basic county fixed effects
model without time-varying fixed effects, and B includes interaction of labor
share with county fixed effects, and fixed effects relative to the first case.

Fig. 4. Augmented synthetic control estimate of the effect of the stay-at-home
order (time 0) and m-out-of-n bootstrap 95% confidence intervals. The minimal
difference between the treated and control counties prior to treatment is evi-
dence of parallel pretrends.
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that county population does not explain the variation, suggesting
other local factors such as workforce mix and perhaps local
conditions also influence the response (Fig. 6C). There is no
equivalent voluntary response to cases that achieves the response
of the stay-at-home order for Dougherty and Richmond Counties,
GA; Christian County, KY; Tunica County, MS; Yuma County,
AZ; Montour County, PA; and Anderson County, TN.

Discussion
There is little uncertainty among public health experts that staying
home and greatly reducing contacts slowed the spread of the
SARS-CoV-2 virus, and Americans increased time at home during
the COVID-19 pandemic. Recent assessments have put all the
weight on policy orders by assumption (23–25), while other ana-
lysts focused on showing that there was a voluntary response (21).
Our results support both mechanisms and show the relationship
between them.
Americans showed nontrivial voluntary behavioral changes in

response to COVID-19 risk. The magnitude of voluntary response
likely would have increased with increasing cases. Stay-at-home
orders overlapped and replaced the voluntary response to cases.
However, mandates kept more people home earlier in the epi-
demic, and epidemiological processes are sensitive to the magni-
tude and timing of behavioral changes. The additional time at
home may be necessary since voluntary behavior is unlikely to fully
internalize the costs of infecting others (38) or congesting hospi-
tals. In some counties, it is unlikely that voluntary shifts in be-
havior would have had qualitatively similar effects on the epidemic
as stay-at-home orders. There are 96 counties with an estimated
equivalent case response greater than 10,000 cases. On the other
hand, there are some counties where stay-at-home orders may
have had little effect on behavior, since for 50% of counties the
case equivalent response is 29 cases or less, which may be within
the margin of reporting error. There are two complicating factors
immediately apparent from our model. First, stay-at-home orders
appear to have led to preemptive gatherings related to prepara-
tion for the mandate. Second, stay-at-home orders may increase in
importance if schools remain open, which is likely because the
emerging evidence suggests that schools do not pose a large
transmission risk, and schooling is a high-value activity (39). How-
ever, school closures likely keep many adults home to provide
childcare (40). Public policies may have encouraged employers to
allow greater flexibility to work from home and diminished cultural
pressure to be present in the workplace. We did not test if policy

mandates increase the salience of risk information, and it would be
difficult to separate a salience effect from a voluntary effect.
The next step is understanding how layering a stay-at-home

order on top of a voluntary response alters the epidemic’s tra-
jectory. Quaas et al. (41) attempted such an analysis and found
that voluntary behavior was likely sufficient to contain COVID-
19 but not suppress it. Such analysis needs to account for the fact
that had Americans spent less time at home, then cases and
death counts would have risen faster, which also could have
accelerated the voluntary behavioral response. Nevertheless,
given testing constraints, it is unlikely more cases would have
been reported during this period, and a voluntary behavioral
response often depends on information about infection rather
than the true number of infections (12). Experience matters, and
people may respond to a case level on the decline or a second
wave differently than the first rise in cases. To ultimately

Fig. 5. Illustration of the case equivalent response to the stay-at-home or-
der concept. The symbol c* is the level of cases when the stay-at-home order
went into effect, and ec* − c* is the cases needed to induce the equivalent
additional time at home. The horizontal difference is the case equivalent
response to the stay-at-home order. The blue curve is the voluntary response
for the no stay-at-home order counterfactual. The red (cyan) curve is the
response with the stay-at-home order when the mandate is imposed on the
median (mean excluding New York City’s 9,065 cases) number case when a
stay-at-home order went into effect. We note that the median county re-
flects the experience of most Americans better than the mean county.

A

B

C

Fig. 6. (A) Cases in each county when the stay-at-home order was in effect
(censored at 99% = 318 cases). Counties imposing stay-at-home orders with
zero cases are shown in black. Missing data or those never imposing
stay-at-home orders are white. (B) Equivalent cases to the response to the
stay-at-home order (values about 95% = 3,553.7 cases are colored yellow)
for each county using coefficients of column 2 in Table 1. (C) Equivalent
cases per population by county.
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evaluate the role of stay-at-home orders in preventing cases or
saving lives, analyses must account for the fact that stay-at-home
orders can simultaneously influence transmission and other be-
havioral responses that influence transmission such as distancing
fatigue and mask wearing (42), along with the arrival and dis-
tribution of pharmaceutical treatments and vaccines. Therefore,
it is important to first separate the behavioral response to the
stay-at-home order from voluntary behavioral responses to cases,
only then can we start investigating the effect of the stay-at-home
order on avoiding cases and deaths.
Understanding the relative role of policy and individual pref-

erences in people’s changes in behavior is critical. The scientific
and policy question is how much credit stay-at-home orders can
take for the behavioral shifts and the associated reduction in
contacts in the resulting pathogen spread or, conversely, how
much blame these orders deserve for economic disruption. These
connected questions are important for three reasons. First, public
health resources that could be used to detect and communicate
local risks need to be allocated to the enforcement and defense of
policy mandates when they are issued. Second, nonpharmaceutical
interventions are at times framed as lives versus the economy, but
our results suggest that this framing is tenuous on its face for most
counties because stay-at-home mandates overlapped with behav-
ior that would have happened as cases rose. Third, the measure of
the equivalent cases requires a publicly knowable risk (e.g.,
COVID-19 cases reported in the county). This implies that any
appeal to our results for forgoing stay-at-home mandates must
also advocate for high levels of testing and accurate and timely
communication.
Public policies led to greater levels of time spent at home

while displacing voluntary efforts. On one hand, the more rapid
response likely reduced cases during the initial wave. The reduc-
tion likely came through timing rather than the ultimate magni-
tude of the response, which was seldom greater than would have
been achieved with a reliance on voluntary behavior. This implies
that the direct economic harms of stay-at-home orders may be
overestimated, though they are not zero. Public health strategies
that rely on voluntary behavior require accurate information that
allows people to make informed decisions. In the case of COVID-
19, that meant accurate and timely local testing and clear, trusted
information (43), two conditions that were rarely met in the first
wave of the epidemic.

Materials and Methods
Data on county-level emergency declarations and stay-at-home orders are
cross-referenced from five sources: Raifman et al. (44), National Association of
Counties (45), the New York Times (46), the COVID-19 policy trackers website
(47), and the Crowdsourced COVID-19 Intervention Data (48). Reported case
and death data came from the New York Times (49). These data are a
measure of what Americans knew about the state of the epidemic and risks,
though testing was evolving and incomplete during this period. All policies
considered were put in place between February 14 and April 7, 2020. District
level school closure data comes from MCH Strategic Data (https://www.
mchdata.com/covid19/schoolclosings). We exclude Alaska, Hawaii, five US
territories, and four independent cities in Virginia because of missing data.

Data on time spent at home is based on anonymized and aggregated
mobile device location data from SafeGraph (50). Benzell et al. (51) used
these data to develop a merit order for business closing, and the use of these
data are increasingly common (e.g., ref. 52). We used three SafeGraph
products to quantify behavior during the epidemic. First, we used median
home dwell time reported at the Census block group on each day. Dwell
time is the time that a device is present at its common evening location,
which is assumed to be home. Common evening location is where the device
most often rests overnight over the preceding 6 wk. We construct a county
average of median home dwell time (Census block group) by weighting the
estimate in each Census block group by the number of devices reported on
that day. The normalization is required to compare estimates over time
because the panel of devices changes over time, and individual Census block
groups can have reporting artifacts. We dropped the lowest 1% of county
dwell times to reduce the misreporting of zero or low home dwell times.

Squire (53) discusses the potential biases in the SafeGraph data and provides
evidence that these biases are unlikely to be large for behavior aggregated
at the county level.

We construct a set of daily county-level weather control variables by
aggregating 4 km gridded estimates of maximum and minimum tempera-
ture, maximum and minimum relative humidity, precipitation amount, sur-
face solar radiation, and wind speed. The data are processed using https://
github.com/jbayham/gridMETr and based on http://www.climatologylab.
org/gridmet.html (54). Summary statistics for all variables are presented in SI
Appendix, Table S1.

We focus on the period between January 31 and April 21, 2020. As of
January 31, only three travel-related cases of COVID-19 were reported in the
United States. On February 14, California issued the first emergency decla-
ration. By April 21, all stay-at-home orders that were issued during the initial
period had been in effect for at least 2 wk.

Our base specification is

ln(Yit) = α + β0 ln(Cit + 1) + β1 ln(Nt + 1) + β2κit ln(Nt + 1) + γ0Eit + γ1Hit

+ γ2Sit + η ln(Cit + 1)Hit + ρXit +wt + qt + ai + zit + eit , [1]

where ln(Yit) is the natural log of minutes spent at home in county i on day t.
The case variables are Cit, which represent the cases in county i and Nt, which
is reported cases from the United States. κit is an indicator for whether the
first case in the county had occurred, which likely influences the saliency of
national cases. We calculate the natural log of cases because of the expo-
nential growth in the early phase of the epidemic. We add one to address
the zeros in the data. The policy main effects are Eit, a dummy variable indicating
whether an emergency order has been issued for the county, Hit, a dummy
variable indicating whether a stay-at-home (or equivalent shelter-in-place) order
has been issued for a county, and Sit, a dummy variable for school closures in
the county. We consider a county under a mandate the first day that a
county has a local or state mandate. The expression ln(Cit + 1)Hit is the in-
teraction between the natural log of county cases plus one and the
stay-at-home order. The interaction is important to allow the response to
cases to vary with and without a stay-at-home order. We condition on
county-level weather Xit and day of week wt with fixed effects. We also
condition for the weekend of March 21. Device counts vary by county and
date. Therefore, we separate device counts into 50 even-size bins and in-
clude a device count fixed effect, zit, that varies by day and county for all
models. Changing the number of device count bins between 25 and 100
does not meaningfully affect the results. We cluster SEs at the state level to
account for state-level serial correlation and heteroskedasticity caused by
the phase in of mandates. We choose to cluster at the state level rather than
the county level because most policies are state wide.

It is always possible for omitted variables to bias the estimate of marginal
effects. To remove the potential correlation between any non–time-varying
omitted variable and the regressors of interest, we include county fixed
effects, ai. These fixed effects control for omitted variables such as county
population and political preferences, which do not vary meaningfully over
the short study period. We address the potential for time-varying omitted
variables in multiple ways described in the following paragraphs.

After estimating the base specification, we consider several alternative
specifications. The purpose of these alternative specifications is to test if the
parameter estimates are stable and robust across specifications. The alter-
native specifications include replacing ln(Yit) with Yit and including cases
from bordering states. We replace county cases with state cases and esti-
mate multiple specifications with both. We replace cumulative reported
cases with newly reported cases at the county, state, and national levels, and
we estimate multiple models that have cumulative and new cases at all three
levels. We replace county cases with reported deaths, and we estimate
models with reported cases and deaths. We replace the time at home metric
with a separate metric from SafeGraph, which is time not at home. Because
of the way smart device data are recorded, these two metrics do not sum to
1,440 min per day.

One concern is that time spent away from home may lead to cases leading
to reverse causality. This has been a concern in research in response to other
infectious agents when data were only available monthly or weekly (14). However,
the time between infection, testing, and reporting is ∼8 to 14 d (https://www.cdc.
gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-2). This lag breaks
the potential for simultaneity within the daily data.

There remains the potential for a time-varying omitted variable to bias the
results, or that county cases are correlated with county responses in a time-
varying manner. If the correlation is not time varying, then county fixed
effects remove the confound. However, if the average individual in a county
is more or less likely to spend time at home in response to cases and counties
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are more or less likely to adopt policies earlier or later, then the estimated
impact of the policy could be biased. One mechanism for this is that counties
vary in a systematic way in the amount of time the average person can
spend at home, which could be driven by the share of essential workers or
the share of the population unemployed. Unemployment data in this period
is not reliable at the spatial and temporal scale of our analysis.

We employmultiple approaches to address potential omitted confounders
that could lead us qualitatively astray. These test the robustness of our core
estimates. First, we consider models with day relative to the first case in the
county fixed effects and day relative to stay-at-home order fixed effects.
These help address the correlation caused by either the epidemic process or
a social process associated with the stay-at-home order.

Next, we include the deviation from the mean county’s labor share in 21
sectors by reported county cases by stay-at-home order interaction, with the
deviation from the mean employment shares in those 21 sectors using data
from the US Bureau of Labor Statistics (https://www.bls.gov/cew/
downloadable-data-files.htm). This controls for variations in maximum time
the average person in a county can stay home and for the share of essential
workers. Furthermore, the county employment shares are likely good pre-
dictors of the unemployment effects counties experienced because these
effects were largely sector specific. Including labor share yields

ln(Yit) = α + β0 ln(Cit + 1) +∑21
j=1

β0j{ln(Cit + 1) ·dsij} + β1 ln(Nt + 1)

+ β2κit ln(Nt + 1) + γ0Eit + γ1Hit +∑21
j=1

γ1j{Hit ·dsij} + γ2Sit

+ η ln(Cit + 1)Hit +∑21
j=1

ηj{ln(Cit + 1)Hit ·dsij} + ρXit +wt + qt + ai + zit

+ eit ,

[2]

where dsij = sij −mean(sj) and sij is the share of 2020s first-quarter average
employment in county i for industry j, where sij is the number of workers in
industry j divided by the employed civilian population in county i.

Third, we examine the pretrend sample with counties before the
stay-at-home orders and 498 counties that never experience a stay-at-home
order. While the counties that never experience a stay-at-home order are
not ideal controls for the other counties, the more credible omitted variables
story suggests that these counties should show a more muted voluntary
response than counties that experienced orders, and we expect that under
the confounding trend hypothesis they provide a lower bound on voluntary
behavior.

Fourth, we directly address concerns about divergent pretrends in the
comparators using the augmented synthetic control method (37). This

method forces us to change the question to what is the average effect of a
stay-at-home order on those counties that received stay-at-home orders? It
does not allow investigation of the voluntary response to cases. We imple-
ment this approach using the R package associated with ref. 37 (https://
github.com/ebenmichael/augsynth). The approach is challenged by the large
number of treated units (55) and is computationally inefficient on a large
data set. We first estimated the model on the largest sample that was
computationally feasible (all 498 untreated counties and about one-third
[869] of the treated counties). However, jackknife SEs are not computa-
tionally feasible on the large sample, so we employ an m-out-of-n bootstrap
(56). We draw 1,000 samples of 200 treated and 200 control counties and
estimate the model. The m-out-of-n bootstrap overestimates the SEs and the
spread of the confidence interval.

A complement to the augmented synthetic control approach is to estimate
the direct response to cases on a data set trimmed to only include data prior to
stay-at-home orders. Therefore, we reestimate our primary specification on
data over the period when counties have not received stay-at-home orders.

We use the primary model estimates to compute the number of cases that
yields an equivalent behavioral response of the stay-at-home order. This is
defined as the number of additional cases needed at the point when the
stay-at-home order goes into effect to elicit the same response voluntarily:

Z(ec,H = 0) = Z(c*,H = 1), where Z(case,  H) equals to ln(Yit) as a function of
county case and whether or not a stay-at-home order was in effect. This
holds other factors constant. Equivalent cases are calculated by county,
where county variation comes from interactions with labor shares infor-
mation and the local state of the epidemic when the stay-at-home order was
issued:

equivalent   cases = ec − c* = exp((β0 + η)ln(c* + 1) + γ1
β0

) − 1 − c*. [3]

Confidence intervals are generated by parametric bootstrap for the
median county.

Data Availability. Replication code is available on GitHub (https://github.com/
youpeiyan/covid_endogenous_policy_response). The data to run the code are
in OPENICPSR: https://www.openicpsr.org/openicpsr/project/135121/version/
V1/view. All other study data are included in the article and/or SI Appendix.
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